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Abstract
As groundwork for a virtual live programming collaboration
environment, we built a peer-to-peer network of devices
designed for 2D and 3D interactions that independently host,
edit, and sync the state of a virtual space in real time. Both
updates driven by a Unity-based peer’s game engine and
updates driven at 60 Hz by a browser-based peer (running in
a reactive JavaScript notebook) were observed. Our system
showed significantly lower latency than a popular client-
server networking service for Unity, and we observed real-
istic physics-based interactions for over 100 shared objects
using a naïve algorithm that allows a peer to claim tempo-
rary ownership of an object’s physics. We see peer-to-peer
networks like this as increasingly relevant to remote and in-
person collaboration on a variety of tasks including learning
and programming, and identify opportunities for improve-
ment in the tools involved in their implementation.
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1 Introduction
Mark Weiser’s 1991 article The Computer for the 21st Century
[1] features a memorable graphic depicting an office where
a variety of devices, including conventional workstations,
laser printers, file servers, and tablets of various sizes all
play a role in the live editing of a shared document. Weiser
contrasts this scene of “embodied virtuality” with the devel-
opment of virtual reality, which he says “attempts to make a
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world inside the computer” and “excludes . . . other people
not wearing goggles and bodysuits.”
Is there a way to get the best of both worlds? While we

think virtual reality offers unprecedented opportunities for
the design of live programming environments and virtual
tools that are easy to open up, explore, and adjust (see for
example the projects described by Kao et al. in [2]), we also
believe that VRmay have potential for connecting to physical
spaces and 2D devices with existing programming infras-
tructure.
To study live collaboration between users and program-

mers inside and outside of a virtual space, we have set up a
fast, flexible communication layer as a first step. In this paper,
we discuss our work on the communication layer of a virtual
collaboration space that can be modified programmatically
at runtime, including observations of its performance in pre-
liminary cross-platform tests and implementation challenges
we’ve faced while setting communications up.

2 Opportunities and objectives
The following scenario is intended to make some of our goals
for our system concrete.

2.1 Scenario: pair programming inside and outside
of VR

Team members A and B are collaborating remotely in devel-
oping a VR game. Member A is using a desktop computer and
is coding in a browser. Member B is wearing a VR headset
and experiencing a virtual environment in which objects are
arranged in space around B’s avatar. The arrangement and
behaviors of the virtual objects are controlled by the code
that A is editing.

1. Over a voice channel, B requests that A create a cube
in front of B.

2. A enters code like CREATE(CUBE, B.FRONT) in the
browser.

3. The code is sent to B’s headset and checked for errors
that would prevent execution from beginning.

4. A receives feedback that the code can run.
5. The code is executed, showing a cube in front of B.
6. B draws something on the cube.
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7. B asks A to move the cube to a position B is pointing
to.

8. A sees B’s gesture on a video feed from the virtual
space.

9. A switches video to the cube’s perspective and nav-
igates to the requested position using the keyboard
and mouse.

2.2 Associated goals
Support networking abstractions for live collaboration and pro-
gramming.When operating in a shared space, users should
not have to worry about sending their changes to other users
and the space’s client-to-client consistency. In the scenario
above, member A should think of the CREATE operation as
simply operating on the virtual space, not as operating on
member A’s copy of the space or member B’s copy. It’s up
to the connection layer to make this change in a reasonable
time for all clients. In a more advanced system, the space
might allow a member to temporarily “fork” the space, test
some updates privately, and merge those back into the main
space. These abstractions provide users without networking
experience with the opportunity to write networked behav-
iors in a controlled way.

Minimize latency. A collaboration space requires real-time
communication among players across a variety of channels
(data, audio, and video). Toward this end, connection latency
should be minimized. The problem latency poses for remote
communication is well-known to anyone who has used a
voice over IP (VoIP) application: if audio latency is above
400 ms, normal conversation is difficult, and <100 ms is the
industry standard for a “good” network.

When audio latency is less than 50 ms, the opportunity for
musical collaboration appears, with reported improvements
down to latencies of around 30 ms. [3] [4] [5]
For a 3D application involving embodied users, the data

channel is especially important. As latency in the data chan-
nel decreases, users are able to respond to each other through
gesture and jointly manipulate objects physically in ways
that mimic fully in-person interactions. As throughput in-
creases, motions become smoother, reducing the need for
interpolation.
In the scenario above, very low latency in the video and

data channels is critical for member A’s ability to move the
cube smoothly to the requested position through teleopera-
tion in step (9).
Widen the variety of clients, and give clients equal access.

As stated above, we’d like our space to support connections
including standalone VR headsets for 3D interactions, web
apps for live-editing and observing the space in 2D, logging
servers, and possibly other types of clients like microcon-
trollers or game engine servers. In the scenario above, both
A and B need low-latency access to the space. A communi-
cation layer that is truly platform-independent will give the
space’s design much more flexibility.

Minimize centralized server requirements. Note that this
does not refer to non-essential servers that still improve
the system’s function when present! The main idea behind
this goal is that if communications with a server fail due to
instability in the system (not unheard of in the context of
live programming systems or distributed systems), as long
as the server is not totally trusted, there will be a sensible
fallback behavior.

There are several other reasons to limit the use of “trusted”
servers. Authoritative administrative servers (whether for
tracking the official current state in a database server, com-
puting state updates in a game engine server, or managing
users in a session server) can be expensive in terms of server
maintenance costs and application latency. They also present
system usability issues: they make a system harder for non-
administrative developers to use (and impossible to modify),
harder for administrative developers to deploy, and mean
that applications running on the system may have to under-
stand special rules around requesting system updates and
obtaining permissions in order to function. Nonetheless, we
think a central signalling server is probably necessary for
setting up connections in most cases.

For our given scenario, the lack of a central server means
it would be easy for the code-checking behavior in step (3)
to be modified (by just updating the headset client) without
taking down or affecting the whole system.

3 Our system
Here we present the choices we made for our space. This
section is relatively technical, but we expect the details of
our implementation and design choices may help researchers
who are interested in developer choices around low-latency
collaborative live-editing systems and collaborative virtual
environments.

3.1 Connections: WebRTC
WebRTC is a set of APIs and protocols for enabling real-
time communication (RTC) between applications on internet-
connected devices. As Blum et al. note in a 2021 article de-
scribing the protocol’s success [6], WebRTC is an increas-
ingly popular and increasingly standardized option for com-
munication even beyond audio and video.

For our system’s communication layer, WebRTC happens
to satisfy all of the goals stated above: it is an open, cross-
platform standard, and its peer-to-peer nature both mini-
mizes latency and the need for centralized servers. Based
on these properties, we view WebRTC as highly relevant
to future research on live collaboration, and offer here a
short guide for navigating its two most significant stumbling
blocks below for those interested.

3.1.1 A brief primer on WebRTC–2 potential stum-
bling blocks. This section is intended as a guide for those
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interested in implementing a system like ours, and can be
skipped by those not interested in such constructions.

Despite the goal of providing a simple API, establishing a
basic WebRTC connection is an involved process.
The first challenge in a peer-to-peer network is resource

discovery. WebRTC does not have anything like DNS, where
resources can be looked up by a familiar name—instead, it’s
up to the developer to provide a way for peers to find each
other and authenticate. This process is called “signaling.”
Our system uses a small NodeJS signaling server we wrote
that runs on a public AWS instance and accepts WebSocket
connections. However, we recommend using a standard, well-
supported signaling server like the PeerJS signaling server[7]
and keeping application concerns out of the server. We dis-
cuss this requirement further in Section 5.
WebRTC’s goal of real-time communication presents a

second challenge. Once they have been connected through
the signaling server, peers must use the connection to ne-
gotiate a faster, more direct connection. To accomplish this,
they ask a server outside the network1 to describe what con-
nection methods look possible for the peer2, then trade this
information with a peer (via the signaling server) to choose
the best connection path.3 Recipes for “perfect negotiation”
should be used to avoid reinventing the wheel and ensure
this process does not deadlock [8].
See Section 5 for further discussion of ways these chal-

lenges might be alleviated.

3.2 Unity-based peers
3.2.1 Twoplatforms. Based on its popularity for VR game
development and its reputation as a beginner-friendly, cross-
platform development tool, we chose the Unity game engine
to represent our virtual space in 3D. Unity’s game engine is
based on Microsoft’s cross-platform .NET framework; as a
result, it can run both in the Unity editor on a desktop com-
puter (PC or Mac) and on a number of platforms including
Android devices.

We chose the Android-based Oculus Quest (and Quest
2) as our target VR platform despite concerns about the
device’s openness; the Quest currently represents 75% of the
VR headset market [9] and is the only major “standalone
headset.” It requires no external hardware to run games, but
can be connected to a computer via USB or wireless network.
As of April 2021, Unity supports WebRTC on Android

devices [10]. However, the WebRTC library requires that the
application be compiled with the IL2CPP scripting backend.
We discuss this issue in Section 5.

1Called a STUN or TURN server; Google offers public STUN servers at e.g.
stun:stun.l.google.com:19302, while TURN servers can be hosted privately
as optional fallbacks for relaying data if it’s impossible to connect directly.
2Called “candidates;” examples would be “connect directly to my IP via
UDP” or “connect to this port of the NAT I am behind.”
3A “session description” detailing the type of media that will be sent and
how it will be output is also passed to allow optimization for e.g. video.

We used both the Unity editor and various Quest head-
sets for testing. Although these two platforms were running
the same code, we treated them as different when testing
based on significant differences in their graphical and central
processing power.

3.2.2 Shared physics. Usingmultiple game engine clients
to simulate shared objects leads peers to disagree about the
positions of objects. A typical symptom of disagreement is
an object “phasing” between two or more positions. While
testing, we used a naïve greedy algorithm to avoid disagree-
ments and distribute physics among the Unity peers. Our
algorithm (for a peer named Alice) requires tracking the last
position of each shared object, but no explicit assignment of
object owners:

• If an object shifted from its last position due to the
physics engine or an interaction fromAlice, Alice turns
its physics on (Unity kinematics and gravity) and sends
a positional update to other peers.

• If an object shifted due to a positional update from
another player, Alice turns off physics for the object
and continues receiving updates.

• If Alice is holding an object, she responds to positional
updates from other players with a counter-update
maintaining its position.

This algorithm worked remarkably well for keeping objects
in sync between peers. It survived tests involving piles of
objects, objects handed between players, and using held
objects to push other objects around. It does not guarantee
consistency, though, and occasionally resulted in an object
being left suspended until it was interacted with.

3.3 Browser-based peers—a short review of
Observable JS as a prototyping platform

We used the Observable JS platform[11] for our browser con-
nections. Observable is an in-browser JavaScript notebook
designed by the authors of D3.js for quickly visualizing data;
Lau et al. note that some of its relatively unique features
include special syntax for displaying and mutating variables,
an execute-on-edit behavior, and reactive cell evaluation [12].
We include a short discussion of our experience with the
platform below.

3.3.1 Pros. Observable has a long list of great features for
application prototyping that really helped us with our work.
We are happy to report

• tweaking/adding new functions at runtime without a
problem, including cells for controlling the positions
of objects in VR.

• using a notebook to walk through establishing a We-
bRTC connection.

• adding useful visualizations of our data on the fly.
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• trivially sharing our peer code among collaborators
and friends for live demonstrations, some of whom
updated it on the fly to see what would happen.

3.3.2 Cons. We had trouble with
• choosing between un-portable reactive cells that are
inspectable vs. portable function blocks that aren’t
inspectable.

• determiningwhere thingswentwrong, especiallywhen
features like mutables were used.

• choosing between having an IDE and having live edit-
ing features.

• bulky cells that can’t be folded away altogether; this
interacted poorly with the out-of-order presentation of
cells, and our peer notebook grew more disorganized
over time.

4 System tests and performance
4.1 Latency
The results of latency testing are summarized in Table 1.

4.1.1 Results. Values for browser one-way latency were
obtained by taking 40 samples and dividing the average
round-trip time by two. Headset measurements were av-
eraged from 15 log entries at different times over an hour,
with no major variations noticed.

At the latencies we measured for our system, recalling
that a frame rate of 60 fps corresponds to a gap of 16.7 ms, it’s
possible for nearby peers to agree on the state within a single
frame. It also means that a peer can receive feedback on a
message within 2 frames (or 4 frames, in the case of a peer
at a distance of 1000 miles). This means the teleoperation
behavior we describe in step (9) of section 2.1 should be
nearly seamless, especially for nearby peers.

4.1.2 Comparisonwith PUN. Photon Unity Networking
(PUN) Object Sync performance was measured by slowing
down videos we took for comparing the motion of an objects
in the space to a PUN-synced mirror. When shaking the ob-
jects up and down rapidly, a PUN-mirrored object noticeably
lags a few frames behind the “actual” object. The latency for
WebRTC-updated objects in our system is generally less than
the time between frames at 60 Hz (16.7 ms), so this effect
does not occur.

4.2 Performance
4.2.1 Browser peer driving many objects. For this test,
we had an array of objects in a Unity peer follow position
updates sent from a browser peer. We tested both updates
mapping mouse position onto position in the 3D space and
updates from loops running at different frequencies. We
tracked the performance of this connection by maintaining a
queue of all processed update timestamps from the previous

Peer 1 Peer 2 (distance) Latency (ms)
Browser Browser (same room) 8
Headset Unity editor (same room) 12
Browser Browser (3 miles) 9
Browser Browser (1000 miles) 32
Headset PUN RPC (same room) 55
Headset PUN Object Sync (same room) *70

Table 1.Measured latency for a single message. (*Estimated
from a video.) Messages were passed from Peer 1 to Peer 2.
For discussion of results for PUN, see section 6.

second and reporting its length periodically. We compared
the number of successfully-processed updates to the total
number sent.

These tests indicated that the Quest could handle around
6000 distinct WebRTC messages per second before messages
were dropped and frame rates faltered noticeably.4 Without
any optimizations, this allows for the remote operation of
around 100 independent objects at 60 Hz (which we verified).
In this test, we also ran 6 other browser peers that received
the same updates without trouble.

4.2.2 Unity peer physics sharing. For our final test, we
created piles of several hundred small cubes in VR and pushed
them around to see whether the system could handle the
updates resulting from the cubes bumping against each other.

This task is no problem for a single headset, but in a fully-
connected network, the number of update messages that
must be issued is multiplied by the number of peers. As ex-
pected, for just 3 connected peers, the frame rate did drop
noticeably during this test. We can partially solve this prob-
lem by sending updates asynchronously, capping the number
of updates, and allowing some peers to fall temporarily out
of sync, but to preserve guarantees around consistency and
to scale past more than a few users, more work is needed.

5 Implementation challenges and future
plans

5.1 Simplifying WebRTC
We already described WebRTC’s complexity in section 3.3.2.
We think signaling and negotiation requirements are sig-
nificant problems for the widespread use of WebRTC–at
present, we would not expect an average developer to set up
a WebRTC connection. While excluding these components
helps WebRTC cover as many use cases as possible, many
users do not care about that flexibility and just want a fast,
direct connection, and we think this capability should be a
standard.
The main barrier to this standardization is the signaling

server. The signaling server only has to hold a small amount
4See the other performance test for details on how asynchronous tasks can
be used as a partial solution for this issue.
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of data linear in the number of active participants, but it
does need to be trusted, reliable, and secure (since it holds
peers’ IP information). Several projects aiming to simplify
WebRTC have popped up over time; the most popular one
right now is PeerJS[13], which offers a free signaling server
and a JavaScript wrapper library. Projects like this are great
and we recommend using them, but they are not part of the
WebRTC standard. We wonder if a higher-level API with
built-in signaling and negotiation (similar to a DNS system)
will be available one day.

As a step in this direction, after cleaning up the code, we
plan to release a C# implementation of perfect negotiation
integrated with the PeerJS server, which will allow Unity
users to take advantage of the free server they provide.

5.2 Unity’s slow edit-compile-test feedback loop
For the PC development build, the time from making an edit
to seeing a result is average at best. On our machine, Unity
requires a few seconds to recompile, followed by around
15 seconds to restart the application, and then it’s often
necessary to put on a headset in order to manually produce
a behavior.

For a standalone Quest build, the turnaround time is very
bad, on the order of several minutes. On our machine, the
IL2CPP build takes around 2 minutes by itself, transferring
the application to the headset (using SideQuest) takes an-
other 30 seconds, and opening the application on the headset
takes another 30 seconds or so due to putting on the head-
set, development applications being hidden from normal
users, and the Unity engine’s boot time. Fortunately, many
issues can be tested using the PC development build, but
in the case of feature differences between the PC and the
Quest (discussed in the next section), it can take a significant
amount of time spent logging and reasoning without much
feedback to fix errors.
The goal of our system is to allow developers to flexi-

bly live-edit event handlers while Unity continues to run,
eliminating both of these long loops in many cases.

5.3 Unity: not completely unified?
We were surprised to find during testing that the feature
support of Unity on the PC and Quest were slightly different,
and had to make several adjustments to our application so
that the same code could run in the Unity editor and on
the headsets. The following features were handled correctly
on the PC but led to errors at runtime on the Quest (our
solutions included in parentheses):

1. Resolving an incomplete SSL certificate chain. (In-
cluded the full chain in the certificate.)

2. Native JSON decoding. (Switched to Json.NET, a third-
party library.)

3. Property access on native dynamic objects. (Also fixed
using Json.NET.)

(We believe (1) resulted from a difference in Android and PC
system-level SSL support. (2) and (3) may have been a result
of different .NET versions running on the PC and Quest,
though this is not certain.)

6 Similar systems
Currently, the most popular free networking package for
Unity is Photon PUN[14]. PUN has been used for a number of
popular games, including social VR applications like VRChat.
As we showed in Table 1 from Section 4, our communication
layer achieves significantly lower latencies than PUN, which
is server-based. PUN supports sending messages to non-
Unity platforms through WebSockets. The use of PUN for
free is capped at 20 concurrent users.
The goal for our system is somewhat similar to Mozilla

Hubs [15], which offers virtual collaboration spaces that run
in the browser using the A-Frame 3D/VR web framework.
Running in the browser gives Hubs significant device-level
portability. However, Hubs does not support more advanced
game engines and is marketed primarily as a social VR tool,
so latency is less of a focus than in our system. Additionally,
live scripting is not a priority for Hubs.
Neos VR [16] is a highly customizable social “metaverse”

game which is more serious about performance and offers an
in-game visual programming language. Unlike our system,
the game focuses on a fully virtual experience, though it can
be connected to other devices via WebSockets.
Google’s Stadia gaming platform delivers cloud-hosted

video games as a service with WebRTC. We see this as a
good sign for the development of teleoperation systems that
provide feedback across a network.

7 Conclusion
We considered the performance and implementation chal-
lenges posed by aWebRTC connection across three platforms
to assess its use in a small distributed system representing
a live-programmable virtual world. We think this type of
connection might be appropriate for researchers of live col-
laboration and distributed VR who want a free, fast, and
flexible peer-to-peer communication layer with state-of-the-
art audio/video streaming support. However, while the speed
of the connection does allow more naïve algorithms for dis-
tributed physics to succeed for a limited number of players
and shared objects, systems intended to support many play-
ers, serious physics simulations, or large numbers of shared
objects will continue to require a mixture of dedicated game
engine and networking servers and more sophisticated state
update algorithms. Overall, we are optimistic that systems
like ours will be increasingly common for live collaboration
applications and may soon enable interesting new modes of
collaboration between users inside and outside of VR, and
look forward to further development of our system’s live
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programming features now that we have some confidence
in its communication layer.
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