Enhancing Liveness with Exemplars in the Newspeak
IDE

Gilad Bracha

gilad@bracha.org

Abstract

Traditional program editing tools are separate from program
evaluation tools.

Exceptions are debuggers as well as REPLs and similar
tools such as Smalltalk workspaces and object inspectors, or
computational notebooks. However, these are not designed
for full scale program development. Most such tools do not
support evaluation of code within an abstraction, such as a
function or class instance. Debuggers do allow such evalu-
ation, but require the user to navigate to a position in the
code by manually initiating an execution path that leads to
that position.

As a result of the separation of editing from evaluation,
programmers writing or reading a program must mentally
simulate its execution in order to understand it. To avoid
the cognitive burden of such simulation, this paper argues
that program editing should be tightly integrated with an
evaluator, so that any expression or statement being edited
can be evaluated at will. We describe the design of a develop-
ment environment for the Newspeak programming language
which fulfills this requirement.

1 Introduction

You have downloaded the code of a program from a source
code repository, and you want to understand what the pro-
gram does. You open it in an editor and start reading. As you
read, you find yourself forced to simulate the execution in
your mind and retain the state of the program in memory -
your memory, not the computer’s. This is obviously stressful
and error prone.

Continuing the above scenario, suppose you realize how
absurd this situation is. Executing programs is the com-
puter’s forte, its very raison d’etre. Why should humans
attempt to emulate execution by hand? And so, you decide
to execute the program. Easier said than done. In most cases,
you have to build the program (often a non-trivial exercise
requiring you to follow brittle and unclear instructions) and
then you have to run it. You may not know what data to use,
or may not have access to such data. Even if you do, you will
want to observe the program internals at select points. And
so you must run it in the debugger. You will have to decide
where to break the execution to see what is going on, and
when to proceed. Once you have proceeded, there is usually
no way back, except restarting execution - unless you are

very, very lucky and have a time traveling debugger. If you
are interested in an execution path that was not executed,
you’ll need to run the program on alternate data (which?).

In short, none of this is convenient, or even feasible. Which
is why the standard practice is to just load the code into a
text editor and simulate the computation in one’s head.

This paper describes a system that addresses the scenario
above (and others). We have implemented an interactive
development environment in which, by and large, code can
always be evaluated, without the need to manually bring an
executing program to a particular point in the code.

Our system is an IDE for the Newspeak programming lan-
guage [10], but the ideas apply to a wide variety of languages.
Newspeak is a language in the Smalltalk [13] tradition, but it
differs significantly from Smalltalk, as it is a modular object-
capability [16] language.

Smalltalk systems (and similar ones, like the advanced
Lisps on Lisp machines) mitigate the scenario described
above somewhat, but not in a fundamental way. We discuss
this matter in detail in section 7.

2 Background: Newspeak and its
Environment

Newspeak is a class-based language distinguished by two
defining properties: all names are late-bound, and there is no
global scope. It uses classes as its sole structuring construct;
there are no packages, units, templates or module declara-
tions in the traditional sense. Instead, top level classes define
modules. These can have classes nested within them, recur-
sively.

Newspeak code is typically developed in the context of
an IDE in the tradition of Smalltalk and Self [24]. The latest
incarnation of this IDE is web-based, and is the basis for this
work. The IDE can be accessed online [20].

Though the Newspeak language does not have a global
scope, the IDE maintains a namespace of top level classes
that it has loaded, known as the root namespace. During de-
velopment, this namespace is useful in circumventing many
of the apparent difficulties that might otherwise arise from
the absence of a top level scope.

3 Obtaining Exemplar Data

Our design is based on the idea that the writer of a program
provides metatadata that describes how every method is in-
voked. In other languages, there may be other abstractions -
functions, constructors, initializers, static "methods", rules,
constraints and so on. Nevertheless, the same approach ap-
plies: any abstraction defined by the programmer abstracts
over something, and the programmer must provide the sys-
tem with sample data to instantiate the abstraction.

In our system, the abstractions are classes and methods.
Classes are instantiated by method invocation, and so we
only have to deal with methods as an abstraction mechanism.
As an example, we show the header for a class BankAccount
[18].

class BankAccount balance: b <Integer>

(* :exemplar: BankAccount balance: 100 *) = (

|

private balance_slot <Integer> ::= b.
|

)

The code above defines the class together with its primary
factory method, which is named balance:. To instantiate the
class, one has to invoke balance: on the class (which is itself
an object), providing a suitable argument. An example in-
stantiation is given above, by means of a metadata comment.
Comments in Newspeak are delimited by (* and *), as in
Pascal [14].

The comment begins with a colon-delimited identifier
:exemplar:. This is a convention that identifies it as a meta-
data comment. The identifier is used to determine how to
interpret the rest of the comment. Newspeak’s reflection
system provides access to metadata, and the Newspeak IDE
interprets metadata comments whose identifier begins with
exemplar as data indicating how to generate exemplar data
for a give abstraction.

The remainder of the comment in our example is an ex-
pression that creates an instance of BankAccount. The IDE
can use this information to create an exemplar instance of
BankAccount. However, there is a question as to what scope
should this expression be evaluated in.

In the case of top level classes, we evaluate the instanti-
ation expression with respect to the IDE’s root namespace.
The same is true for class methods of top level classes.

A similar mechanism is used for methods. BankAccount
has a method withdraw:, shown below:

public withdraw: amount <Integer>

(* :exemplar: withdraw: 100 *) = (

amount > balance if True: [

Error signal:’Overdraft not allowed. Withdrawal amount’,
amount printString,
> exceeds balance ’,
balance printString

Gilad Bracha

balance_slot:: balance - amount

)

Here we see that the exemplar provides a sample invoca-
tion of withdraw:. The method invocation is evaluated in
the scope of the enclosing instance - that is, the instance of
BankAccount we derived from the metadata for the classes’
factory above.

Nested classes are properties of instances, just like meth-
ods. As with methods, the exemplar of a nested class is com-
puted in the scope of the surrounding classes’ exemplar.

In another language, different rules would have to used to
determine the scope in which to evaluate exemplar-generating
code. Nevertheless, the principle of using metadata to specify
how to instantiate an abstraction remains applicable.

Some languages have non-executable constructs such as
type declarations. Even in these cases, it should be possible
to specify how to produce sample data to provide concrete
exemplars of these declarations (e.g., sample records or tuples
for record or tuple types, or example functions for function
type signatures).

3.1 Alternative Mechanisms for Generating
Exemplar Data

There are various refinements and alternatives to the mech-
anism described above. Methods that take no parameters do
not really require exemplar data. A common case is a class
which uses the default factory, new. We simply invoke new
on the class to obtain an exemplar. In Newspeak, there are
several conventions for method names which give a strong
indication of what parameters are expected, and we intend to
utilize these as well, to reduce the burden of writing metadata
(see discussion in section 6 below).

Tests are a natural source for exemplar data. Type informa-
tion can be helpful as well - if we know the type of a variable,
and we know how to instantiate the type, we can populate
the variable. However, types may be given as names of ab-
stract classes (and in other languages, interfaces) in which
case we may not know how to instantiate the type. To ad-
dress the issue, one may wish to associate metadata with the
type declaration itself.

Finding senders of methods can help alleviate the burden
of metadata in cases where the senders (or their senders, re-
cursively) already have exemplars. This would be somewhat
similar to what is done in Margin Notes [15].

Conceivably, one might perform sophisticated static anal-
ysis to determine how to create exemplars.

In all these cases, one eventually has to extract source
code that will be used as metadata so that the exemplars can
be recreated when loading code from source.

Another option is to locate existing instances in the heap,
which may have been produced by tests, debugging and so
on. In fact, we experimented with this strategy in the past [4-
7].It was insufficient by itself. It also suffers from the fact that
one cannot produce exemplars for newly created or loaded

Enhancing Liveness with Exemplars in the Newspeak IDE

code. Our metadata based stategy allows us to read code from
source and produce exemplars for it immediately. In contrast,
to produce reusable metadata from existing instances, we
would need to know the provenance of these instances.

4 Using Exemplar Data

As indicated in the introduction, our primary goal is to use
exemplars to provide bindings for names in the program
so users can evaluate expressions, in order to ease their
cognitive load. Exemplars may be leveraged in additional
ways: they can help create tests or infer types for example.

4.1 Easing Cognitive Load

Figure 1 shows the class BankAccount as displayed by the
IDE.

The class is automatically displayed in the context of an
object inspector on an instance. The instance is the result
of evaluating the exemplar code, and is used as the value of
self throughout the class instance methods.

The instance variables are listed at the bottom of the in-
spector. In our case there is only one such variable, bal-
ance_slot whose value is shown to be 100 - the value passed
in to the class’ factory method in the exemplar code. Imme-
diately above the instance variables is an evaluator - a text
pane in which free form code may be typed and evaluated.

All of the above is very standard. What is unusual is that
the methods are displayed in the same context, and that their
source can be evaluated. Furthermore, the programmer did
not take any action in order to create the object being in-
spected. It is not the programmer’s responsibility to ascertain
suitable arguments with which to instantiate the class - this
happens automatically when the class is viewed.

Each method has an associated Debug button. Clicking on
this button opens a debugger at the beginning of the method,
using the exemplar receiver and arguments. In addition, one
may select and evaluate code snippets within the method
editor itself, and the results are displayed below the method
body. In Figure 1, we see the value false as the result of
evaluating amount > balance.

It is often useful to provide multiple exemplars. A method
may be called with different kinds of arguments; distinct
argument values may provoke different control paths within
a method. In the latter case, having multiple exemplars is
necessary to produce complete code coverage, so that code
in every part of the method can be evaluated at will.

It is perfectly acceptable to provide multiple metadata
comments each producing a distinct exemplar. The system
will then provide a menu of exemplars in place of the Debug
button, with each menu entry invoking the debugger on the
appropriate exemplar. To distinguish among the entries, each
exemplar should be named, ergo, :exemplar-1:, exemplar-
false: and the like.

self instance of BankAccount ?

enclosingObject nil

> class
v BankAccount a L C2
v balance: (3
class BankAccount balance: b <Integer>
(* :exemplar: BankAccount balance: 100 *) = (
lhul;mcv slot <Integer> ::=b.
|
)
Classes ¥ et »x C?
Instance Methods < o - 5.)
> balance Debug LJ
> deposit: Debug [J
v withdraw: Debug (]

Evaluate Selection Start Live Evaluation

public withdraw: amount <Integer>
(* :exemplar: withdraw: 100 *) = (
amount > balance ifTrue: [

Error signal: 'Overdraft not allowed
Withdrawal amount ', amount printString, '
exceeds balance ', balance printString

balance slot:: balance - amount

)
false (%]

Class Methods SE AN (L2

Evaluate Selection Start Live Evaluation

> balance_slot 100

Figure 1. Class BankAccount

It is useful to have an additional evaluator pane where
arbitrary expressions can be entered and evaluated in the
context of the method. Such an evaluator can be opened via
a menu option, but is not open by default. One needs to be
careful managing screen real estate. In previous attempts
[6, 7], we exposed a full debugger UI for every method. This
occupied too much space.

Another attractive option is to evaluate code as one types,
so one can see the results as one codes. The Start Live Evalua-
tion button is intended to toggle this functionality, which can
also be very distracting. Currently this feature only works in
free form evaluators. We hope to enable it in method editors
in the near future.

Exemplars can also be used for name completion, though
we have not yet explored this option. See the discussion of
types in the following subsection.

4.2 Additional Uses

Exemplars have an intriguing relationship with tests. Tests
can be used to generate exemplars, but the inverse is almost
true as well: exemplars can help generate tests; what’s miss-
ing is a specification of the desired test result. Nevertheless,
an interactive tool can use exemplars to produce part of the
test boilerplate, leaving it to the user to complete.

Types too have a bidirectional relationship with exem-
plars. Type information would help produce exemplars, but,
as noted in section 3.1, some information might be missing.
Conversely, exemplars can be used to produce type infor-
mation. This idea is closely related to live typing [26]. An
obvious concern is that the derived type information may
be too specific, but this can be mitigated by using several
exemplars, carefully chosen.

5 An Advanced Example

The previous example is, by design, very simple. The only
parameters are integer literals. Often, the parameters are
objects that need to be instantiated themselves, and these in
turn may have arguments and so on. Below is an example
illustrating how such situations are handled.

The code shows the header of class MetadataParsing, a
utility class used by the system itself to parse metadata. The
class factory method takes two parameters: a platform object
and a scanner class.

Using a platform object is a common idiom in Newspeak.
The platform object provides access to standard functionality.
In the case of MetadataParsing it is used to access collection
classes such as List and Map. The workspace scope used
for top level class exemplars provides access to the platform
directly. !

The scanner class we use in the exemplar is nested in class
NewspeakPredictiveParsing. Nested classes in Newpeak are
properties of instances of their enclosing class, and so we
must instantiate NewspeakPredictiveParsing in order obtain
a scanner class. The factory of NewspeakPredictiveParsing
again takes a platform, but also an instance of an AST class,
produced in turn by instantiating NewspeakASTs with plat-
form.

class MetadataParsing usingPlatform: platform scanner-
Class: S < NewspeakPredictiveParsing Scanner class >

(" :exemplar:

[

|

asts = NewspeakASTs usingLib: platform.

IThe use of platform is so common that if a class uses a factory named us-
ingPlatform:, the IDE automatically provides an exemplar without requiring
explicit metadata.

Gilad Bracha

Parser = NewspeakPredictiveParsing usingPlatform: plat-
form asts: asts.
|
MetadataParsing usingPlatform: platform scannerClass: Parser Scan-
ner
] value
")
*
Module for parsing Newspeak language metadata.
")
|
List = platform collections List.
Map = platform collections Map.
Scanner = S.

|
)

The exemplar is computed by a closure (delimited by
square brackets). The closure is then executed by invoking
the method value. This idiom allows us to define local vari-
ables that name subtrees of the overall exemplar expression.
In the above example, the use of the closure is not essential;
we could have written the exemplar expression as

MetadataParsing

usingPlatform: platform
scannerClass: (
NewspeakPredictiveParsing
usingPlatform: platform
asts: (NewspeakASTs usinglLib: platform)
) Scanner

However, in cases where intermediate expressions must
be shared, using local variables is necessary. Using closures
allows us to instantiate objects in a completely general way
using only expressions. Languages with constructs such as
where-expression or let-bindings might utilize these for sim-
ilar purposes. In some other languages exemplars may have
to be specified via constructs other than expressions.

6 Limitations

Here are some downsides/difficulties with our approach:

The burden of specifying metadata. Adding the meta-
data is not too burdensome if it is done on an ongoing basis
during development. However, converting a substantial pre-
existing code base can be challenging.

Erroneous exemplars. What happens if the exemplar
code raises an exception? In that case, we fall back to the
regular, "dead" display. Thus, we can never guarantee the
live presentation of every last piece of code. If a method or
class displays as "dead" one can paste its exemplar code into
an evaluator for the surrounding scope (i.e., the enclosing
object ’presenter, or, for top-level classes, an IDE workspace).
The code may then be evaluated and debugged in the normal

Enhancing Liveness with Exemplars in the Newspeak IDE

fashion. We are considering Ul affordances to streamline this
process.

Dependency Management. We cannot produce exem-
plars of a method without access to classes whose instances
are used as its parameters. If we load a module in complete
isolation, we may not be able to instantiate the metadata if
it relies on classes that are not already loaded in the IDE.

Exemplars interacting with the running system. Care
must be taken when producing and using exemplars of classes
that are part of the running system - the existing platform li-
braries or the IDE itself. It may be too easy to tamper with the
underlying system in this situation. There are well known
techniques against "shooting one self in the foot": running
a distinct copy of the system in a separate process or actor
and manipulating it via mirrors for example [9, 27].

Security. Loading code into the IDE is now a security
issue, since viewing the code may cause execution in the
IDE scope, which has full access to the platform, includ-
ing writing files etc. Some restriction to a safer sandbox, or
preventing exemplar metadata from running without some
review/permission seems desirable.

Discouraging Abstraction. Some may complain that by
providing concrete exemplar data, the system discourages
programmers from thinking abstractly and considering all
possible values.

Documentation Rot. As code evolves, comments often
become obsolete through lack of maintenance. However,
compared to traditional comments, developers have a stronger
incentive to maintain exemplar metadata. The situation is
more directly analogous to maintaining tests. Should the
metadata evaluation fail, developers lose the considerable
benefits of exemplars. Furthermore, because metadata is ac-
cessible via reflection, developers can access it easily and
reliably. This makes it straightforward to automatically ver-
ify that exemplars are operational.

7 Related Work

The concept of unifying editing and evaluation tools based
on examples in the text originates in [12]. That work extends
Java and Eclipse and uses a two pane tool which integrates
an editor in one pane, and trace view in another. It uses traces
of complete exemplar execution to provide variable bindings,
whereas we use exemplars to invoke methods, but rely on
either classic fix-and-continue debugging or explicit user
evaluation within methods. The paper discusses extensions
to allow recursively inspection of objects, but this was not
implemented.

The Babylonian-style editor [17] for Javascript is quite
similar to our work in many ways. It supports the definition
of multiple, named exemplars by the user much as we do. It
too is based on the use of traces.

Margin Notes [15] produces exemplar data from prior
executions of Ruby code. Margin Notes does not support full
evaluation of code based on the gathered exemplars differs
and the data gathered is not integrated into the source code.

Debuggers provide a live evaluation environment for code
inside abstractions, but one has to navigate to the code via
an execution path: one has to call it. The code browsing
experience is constrained by the execution path; for example,
if one wants to examine all the callers of a function, one
cannot observe valid bindings in any of these except the
actual caller currently on the stack.

Self [24], being a prototype based language with a live IDE,
naturally provides a context where the instance is always
available for evaluation, and instance variables are always
populated. However, Self does not provide bindings for pa-
rameters. And when a language does not rely on prototype
objects, the problem of dealing abstractions and their param-
eters becomes even more acute. This is the principle issue
we address.

REPLs allow for code to be incrementally written and
evaluated. They are not typically geared toward reading and
evaluating existing code. Often, they are not suited to the
creation of long lived code. Consider how awkward it is to
define a function in the Python REPL for example.

Languages often require declarations such as modules or
packages which do not denote values, and support for these
in many traditional REPLs is either lacking or poor. In any
event, in order to see values inside an abstraction such a
function, one has to manually make a call. See [25] for an
extensive discussion of REPLs.

Classic BASIC implementations allowed for the creation
and editing of code in an interactive REPL. These relied in
systemic use of line numbers, and allowed new code to be
entered by adding lines with intermediate numbers. As such,
they are closer in spirit to the approach we advocate than
many later REPLs. However, they did not scale well beyond
a single function. Similar, more sophisticated facilities, called
workspaces, were available in APL systems since the 1960s.
However, in all these systems, the only way to populate
variables inside an abstraction is to make a call and navigate
though an execution path.

Emacs is an editor with a built in scripting language, elisp,
and it can evaluate elisp expressions. The difficulty arises
when one has to evaluate code within an abstraction, like a
function.

The most sophisticated environments are those of Lisp,
especially Lisp machines, and of Smalltalk, but they still have
the same basic limitations.

Smalltalk workspaces allow for a much more fluid ex-
perience than REPLs. Code snippets can be selected and
evaluated, but they are not intended for the creation of com-
plete programs. Methods and classes must be created in class
browsers. These allow for evaluation of expressions that
have meaning in static scopes (either the global scope, or

that of the class) but not of expressions whose value relies
on the instance or the parameters of a method.

Even closer to our model are Smalltalk object inspectors,
but one has to have an object in hand to use them, Also, as
in Self, they do not offer support for examining the values
of parameters or local variables.

As noted above, exemplars have a close relationship to
unit testing.

The Pyret programming language [2] allows function dec-
larations to optionally incorporate unit tests as part of their
syntax. This information could be used in place of the meta-
data we use, however the existing tooling, which includes an
online editor and REPL, does not do so. The idea of extend-
ing Newspeak syntax to allow, or even require, exemplars is
intriguing however.

Python’s doctest module [3] supports execution of tests
based on example code provided in comments. There is how-
ever no live editor which would tie the data produced by the
examples to the code being edited.

Computational notebooks combine sample data with code
unlike the systems above. Unfortunately, they provide scant
support for navigating codebases. Even the constrained nav-
igation model typical of debugging is not supported. One
can see the bindings of expressions to data in the notebook,
but one cannot usually navigate into the bodies of functions
being called.

Last but not least, the Glamorous Toolkit [11, 23] is a
programming environment where object inspectors play a
central role. Exemplars are closely related; if everything is an
object in the language, than everything is an object inspector
in the tooling. 2

8 Status

Exemplars work in all code views: in class presenters, when
searching for methods or classes by name, when listing
senders or implementers of a message, in the unit test suite
presenter, and of course in the debugger.

Nevertheless, exemplar support in the Newspeak IDE is
a work in progress, as is the web based IDE itself. It is defi-
nitely not production ready software by any stretch of the
imagination. As noted above, we expect this functionality to
evolve, especially in terms of the UL

In the existing Newspeak codebase, most classes and meth-
ods do not have exemplar metadata, and so these classes
are displayed "dead" as is the norm. Once the exemplar im-
plementation is more stable, we plan on adding metadata
throughout the system. At that point we will have achieved
the goal of having live exemplar data everywhere we view
or edit code.

Source code is available at [19]. The system is available
for download as an Electron [1] app on the web [21], and can

2This does not imply that the approach is limited to object-oriented pro-
gramming; exemplars can represent live values, objects or otherwise.

Gilad Bracha

also be run online in a web browser [20]. Further information
is available at [22]. A brief video demonstrating the system
described in this paper is available at [8].

9 Conclusions

Computers should relieve programmers of the burden of sim-
ulating execution when reading code by providing live data
for all expressions in the program. This is can be achieved by
integrating sample expressions for instantiating abstractions
into the source code, and using editors integrated with live
evaluation engines to navigate that code.

References

[1] [n.d.]. Electron JS web site. https://www.electronjs.org/

[2] [n.d.]. Pyret programming language web site. Retrieved August 16,
2021 from https://www.pyret.org/

[3] [n.d.]. Python doctest module online documentation. Retrieved August
16, 2021 from https://docs.python.org/3/library/doctest.html

[4] Gilad Bracha. 2012. Debug Mode is the Only Mode. https://gbracha.
blogspot.com/2012/11/debug-mode-is-only-mode.html

[5] Gilad Bracha. 2013. Live 2013 Newspeak Demo. https://youtu.be/
74WqdS_58uY

[6] Gilad Bracha. 2013. Making Methods Live. https://gbracha.blogspot.
com/2013/04/making-methods-live.html

[7] Gilad Bracha. 2017. Newspeak exemplar-mode demo from Live Literate
Programming talk at Programming 17. https://youtu.be/Yv7yX27Tx4U

[8] Gilad Bracha. 2021. Exemplars in the Newspeak Web IDE. https:
//youtu.be/qgKWPSvcF0zA

[9] Gilad Bracha and David Ungar. 2004. Mirrors: Design Principles for
Meta-level Facilities of Object-Oriented Programming Languages. In
Proc. of the ACM Conf. on Object-Oriented Programming, Systems, Lan-
guages and Applications.

[10] Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William
Maddox, and Eliot Miranda. 2010. Modules as Objects in Newspeak.
In European Conference on Object-Oriented Programming.

[11] Andrei Chis. 2016. Moldable Tools. Ph.D. Dissertation. University of
Bern, Institue of Computer Science.

[12] Jonathan Edwards. 2004. Example Centric Programming. ACM
SIGPLAN Notices 39 (December 2004), 84 — 91. Color version at
http://www.subtext-lang.org/OOPSLA04.pdf.

[13] A. Goldberg and D. Robson. 1983. Smalltalk-80: the Language and Its
Implementation. Addison-Wesley.

[14] K. Jensen and Niklaus Wirth. 1978. Pascal User Manual and Report
(second ed.). Springer-Verlag.

[15] Geoffrey Litt. 2018. Margin Notes. https://www.geoffreylitt.com/
margin-notes/

[16] Mark Samuel Miller. 2006. Robust Composition: Towards a Unified
Approach to Access Control and Concurrency Control. Ph.D. Dissertation.
Johns Hopkins University, Baltimore, Maryland, USA.

[17] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert
Hirschfeld. 2019. Babylonian-style Programming: Design and Imple-
mentation of an Integration of Live Examples Into General-purpose
Source Code. Journal on The Art, Science, and Engineering of Program-
ming 3 (2019).

[18] Newspeak Team. 2021. Class BankAccount Source Code. Ministry of
Truth. https://github.com/newspeaklanguage/newspeak/blob/master/
BankAccount.ns

[19] Newspeak Team. 2021. Newspeak github Repository. Ministry of Truth.
https://github.com/newspeaklanguage/newspeak

[20] Newspeak Team. 2021. Newspeak IDE on WASM. Ministry of
Truth. https://newspeaklanguage.org/samples/primordialsoup.html?

https://www.electronjs.org/
https://www.pyret.org/
https://docs.python.org/3/library/doctest.html
https://gbracha.blogspot.com/2012/11/debug-mode-is-only-mode.html
https://gbracha.blogspot.com/2012/11/debug-mode-is-only-mode.html
https://youtu.be/74WqdS_58uY
https://youtu.be/74WqdS_58uY
https://gbracha.blogspot.com/2013/04/making-methods-live.html
https://gbracha.blogspot.com/2013/04/making-methods-live.html
https://youtu.be/Yv7yX27Tx4U
https://youtu.be/qKWPSvcF0zA
https://youtu.be/qKWPSvcF0zA
https://www.geoffreylitt.com/margin-notes/
https://www.geoffreylitt.com/margin-notes/
https://github.com/newspeaklanguage/newspeak/blob/master/BankAccount.ns
https://github.com/newspeaklanguage/newspeak/blob/master/BankAccount.ns
https://github.com/newspeaklanguage/newspeak
https://newspeaklanguage.org/samples/primordialsoup.html?snapshot=HopscotchWebIDE.vfuel
https://newspeaklanguage.org/samples/primordialsoup.html?snapshot=HopscotchWebIDE.vfuel

Enhancing Liveness with Exemplars in the Newspeak IDE

[21]

[22

—

(23]

[24]

[25]

snapshot=HopscotchWebIDE.vfuel

Newspeak Team. 2021. Newspeak Programming Language downloads
page. Ministry of Truth. https://newspeaklanguage.org/downloads.
html

Newspeak Team. 2021. The Newspeak Programming Language web site.
Ministry of Truth. https://newspeaklanguage.org/

The Feenk Team. [n.d.]. Glamorous Toolkit. Retrieved August 19, 2021
from https://gtoolkit.com/ See also feenk.com and moldabledevelop-
ment.com.

David Ungar and Randall B. Smith. 1987. Self: The Power of Simplicity.
In Proceedings OOPSLA °87, ACM SIGPLAN Notices. 227-242. Pub-
lished as Proceedings OOPSLA 87, ACM SIGPLAN Notices, volume
22, number 12.

Thomas van Binsbergen, Mauricio Verano Merino, Pierre Jeanjean,
Tijs van der Storm, Benoit Combemale, and Olivier Barais. 2020. A

[26]

[27]

principled approach to REPL interpreters. In Onward! 2020 - Proceedings
of the 2020 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, Co-located
with SPLASH 2020. 84-100. https://doi.org/10.1145/3426428.3426917
Hernan Wilkinson. 2019. VM support for live typing: automatic type
annotation for dynamically typed languages. In Programming ’19:
Proceedings of the Conference Companion of the 3rd International Con-
ference on Art, Science, and Engineering of Programming (Genova, Italy).
Association for Computing Machinery, New York, NY, USA.

Allen Wirfs-Brock, Juanita Ewing, Harold Williams, and Brian Wilk-
erson. 1996. A Declarative Model for Defining Smalltalk Programs.
invited talk at OOPSLA 96; available at
http://www.smaltalksystems.com/publications/_awss97/index.htm.

https://newspeaklanguage.org/samples/primordialsoup.html?snapshot=HopscotchWebIDE.vfuel
https://newspeaklanguage.org/downloads.html
https://newspeaklanguage.org/downloads.html
https://newspeaklanguage.org/
https://gtoolkit.com/
https://doi.org/10.1145/3426428.3426917

	Abstract
	1 Introduction
	2 Background: Newspeak and its Environment
	3 Obtaining Exemplar Data
	3.1 Alternative Mechanisms for Generating Exemplar Data

	4 Using Exemplar Data
	4.1 Easing Cognitive Load
	4.2 Additional Uses

	5 An Advanced Example
	6 Limitations
	7 Related Work
	8 Status
	9 Conclusions
	References

