Data Theater: A Live Programming Environment for
Prototyping Data-Driven Explorable Explanations

Sam Lau
UC San Diego
La Jolla, CA, USA
lau@ucsd.edu

ABSTRACT

Explorable explanations (a.k.a. ‘explorables’) enable readers
to learn concepts in domains such as math, physics, and the
social sciences by interacting with live visualizations. Despite
their popularity, there is currently a high barrier to creating
explorables since one must be adept at UI and visualization
programming. To learn about these challenges, we interviewed
6 educators who were interested in explorables but lacked the
skills to create them from scratch. These interviews gave us
design insights to lower some of these implementation bar-
riers. We used these insights to create a live programming
system called Data Theater that enables programmers to pro-
totype explorables by writing their simulation logic in Python
and mapping Python values to visualization elements using a
declarative JSON grammar. To demonstrate the capabilities
of Data Theater, we used it to recreate two of Bret Victor’s
original physics simulation explorables and found that our
approach can lower the barriers to prototyping explorables.

INTRODUCTION

Explorable explanations (often called ‘explorables’) engage
learners by embedding interactive visualizations within textual
explanations [1, 12]. For example, one popular explorable,
Parable of the Polygons [6], asks viewers to interact with a
simulation of triangles and squares to learn how large-scale so-
cial segregation can emerge from small individual biases. The
recent popularity of explorables has motivated educators to cre-
ate explorables for topics ranging from statistical histograms
to voting systems. In a classroom, instructors can use live
explorables in lessons as active learning activities; they enable
students to pose and answer hypotheses in real-time [12].

However, there is currently a high barrier to implementing
explorables, which makes it hard for many instructors to make
them. Creating an explorable requires expertise in interactive
UI programming using specialized visualization libraries [7].
How can we lower the barrier to creating explorables for
instructors who have only basic programming knowledge?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Philip J. Guo
UC San Diego
La Jolla, CA, USA
pg@ucsd.edu

In our experience with implementing explorables, we found
that even simple explorables require writing hundreds of lines
of JavaScript. However, the amount of code corresponding
to their core logic is usually an order of magnitude smaller
than the total code. For instance, a representative statistics
explorable within Seeing Theory [8] contains under 20 lines
of logic to simulate dice rolls intertwined within 200 lines to
set up Ul event listeners and visualize results using D3 [3].

To surface opportunities to abstract away this boilerplate code,
we conducted formative interviews with six instructors of
statistics and data science courses. We asked the instructors to
make pen-and-paper mockups of explorables based on their
lecture slides. These interviews revealed that instructors do not
actually need the high degree of UI flexibility to manipulate a
simulation that current explorables provide. Instead, instruc-
tors were most often interested in visualizing steps of an algo-
rithm, similar to how program visualization tools like Python
Tutor [5] allow users to visualize execution steps of code.
These interviews suggest that code visualization techniques
might enable instructors to quickly prototype explorables.

Informed by these insights, we created Data Theater, a live
programming system that allows instructors to construct cus-
tom explorables on top of Python code without requiring
knowledge of user interface programming. Data Theater sim-
plifies the explorable authoring process for instructors by sepa-
rating the logic of an explorable from its visual representation,
and by allowing only one simple interaction for manipulating
visualizations: stepping through statements of Python code.

To demonstrate the capabilities of Data Theater, we used it
to recreate two of Bret Victor’s original physics simulation
explorables [11] and found that Data Theater’s approach can
potentially lower the barriers to prototyping explorables.

RELATED WORK

Explorable explanations is an instructional format popularized
by Bret Victor, Vi Hart, Nicky Case, and others [1, 6, 12].
Broadly it refers to web-based articles that interleave explana-
tory prose with interactive visualizations so that readers can
actively engage with the material. Journalists sometimes refer
to these as interactive articles, and notable data journalism
teams at The New York Times, Washington Post, and other
publications have published such articles for, say, exploring
voting patterns [4]. Distill is a web-based academic journal
that publishes interactive articles on machine learning [2].

10.1145/1235

Most explorables are now created manually as bespoke
JavaScript visualizations using libraries such as D3, React,
and other UI frameworks [4, 7]. To ease this process, devel-
opers have created specialized reactive frameworks such as
Tangle [13] and Idyll [4], which allow UI widgets to be bound
to event handlers in a concise declarative way. For instance,
one can use these frameworks to easily create an HTML slider
which live-updates the value of a numerical parameter that is
then fed into a JavaScript-based visualization.

While the above approaches are powerful, we chose to take
a complementary approach with Data Theater. Instead of
building a reactive framework capable of making arbitrarily
sophisticated user interactions, we leverage the fact that the
instructors in our target audience (see next section) mostly
wanted a much simpler user interaction: they wanted step-
by-step algorithm walkthroughs augmented with their own
domain-specific visualizations. Thus, we adopted the same
metaphor as debuggers and program visualization tools such
as Python Tutor [5], where each execution step represents
one step in the explorable. We combine this metaphor with
a declarative JSON visualization grammar inspired by Vega-
Lite [9], which allows the creator to map Python values to
custom graphical objects. Finally, to enable rapid prototyping,
Data Theater is a live programming system implementing Tan-
imoto’s Level-3 liveness [10], which updates the visualization
whenever the Python code or declarative JSON visualization
grammar is edited. This liveness enables rapid iteration and
live coding in front of a classroom to adjust lessons on the fly.

FORMATIVE INTERVIEWS AND DESIGN GOALS

To understand why and how instructors may want to use ex-
plorables, we conducted one-hour interviews with six instruc-
tors who teach statistics and data science courses at a large
U.S. university. Before the interviews, we asked each instruc-
tor to send us teaching materials from a representative lesson.
During the interviews, we showed them examples of existing
explorables related to their lesson topics, then asked instruc-
tors to make pen-and-paper sketches for an explorable they
would ideally want to use the next time they taught that lesson.

Explorables as worked examples

Our instructors were most excited to use explorables as worked
examples! during their lessons. Although instructors already
included examples in their lecture slides, they found it difficult
to predict how many examples their students needed to see be-
fore feeling like they understood the topic. This was especially
relevant for simulations that relied on randomness. For in-
stance, in one set of lecture slides an instructor simulated dice
rolls to count the number of rolls before the first six appeared.
When a student asked how the simulation would change if
the dice were rolled until either a five or six appeared, this
instructor wanted the ability to alter the simulation and re-run
it multiple times but could not do this using his static slides.
Other instructors also echoed this desire to adjust parameters
of a simulation in real-time during a live lesson in response to
student questions, citing this as a primary reason they would
want to use explorables in their future lessons.

1https://en.wikipedia.org/wiki/Worked-example_effect

Barriers to creating explorables

Instructors wished to customize explorables just as easily as
they could customize lecture slides. However, none of them
knew how to use their existing programming knowledge to
create explorables. And as non-specialists in building user
interfaces, they thought their time would be better spent on
making lesson materials than learning tools like D3 or React.

These instructors expected students to learn programming for
the purpose of data cleaning, visualization, and modeling. To
this end, they taught programming, ran simulations, and dis-
played data visualizations during lecture. Because their data
analysis code also served as learning artifacts for students,
they avoided cluttering up their code with details that they did
not expect students to understand. Thus, even instructors who
knew about packages for generating user interfaces like ipy-
widgets? and Shiny? chose not to use these packages because
they did not want to mix UI code with data analysis code.

Guided walkthroughs, not freeform playgrounds

Looking at the sketches instructors made for desired ex-
plorables revealed a gap between the interactions that current
explorables enable and what instructors wanted in explorables
for their lessons. Most notably, explorables like Parable of the
Polygons [6] are like freeform playgrounds—they give options
to change simulation parameters through Ul elements, but it
is up to the reader to configure and run the simulation; for
instance, there are multiple sliders and buttons to change the
way the simulation generates and animates shapes. In contrast,
our instructors desired to present explorables through guided
walkthroughs—they wanted to explicitly guide students to
pedagogically-meaningful outcomes by changing one parame-
ter at a time. For example, one instructor sketched separate
explorables for sample size, population data, and sampling
method, deliberately choosing to create separate explorables
for each parameter rather than a “kitchen sink™ explorable.

Instructors also pointed out that, when presenting a lesson,
simpler interfaces are better. One instructor liked the flexibility
in the explorables we showed her but was concerned that
she would forget how to manipulate the complex UI during
a live lecture. Another mentioned that he would feel more
comfortable using explorables in class if he had a slideshow-
style interaction to “just press the spacebar.”

Design goals
We synthesized these interview observations into three design
goals for explorable authoring systems for instructors:

e D1: Decoupling of data and visualization: instructors
should be able to specify the core logic of an explorable
separately from the visual interface of the explorable.

e D2: Liveness: tools for authoring instructional explorables
should automatically update visualizations to maintain con-
sistency with data during the prototyping process.

e D3: Unified interaction: instructors prefer a simple and
consistent interface for presenting explorables to students
rather than a flexible yet complicated interface.

2https://github.com/jupyter—widgets/ipywidgets
3https://shiny.rstudio.com/

https://en.wikipedia.org/wiki/Worked-example_effect
https://github.com/jupyter-widgets/ipywidgets
https://shiny.rstudio.com/

|_NON JEIEY il
from random import choices, SEEdO avg Submit
seed(42)
avgs = [] "type": "rect",
dice = 2 "x": 0,
"y": 50,
for _ in range(100): "dx": {
rolls = choices([1, 2, 3, 4, 5, 6]
avg = sum(rolls) / len(rolls) "scale":
avgs.append(avg)
"domain":
1,
- Step: 87 p
(D }
"range":
a,
250

]

localhost

"value": "avg")

]
"type": "linear", D
[]

(B s | ©

DI:I 0

=]

B~ g

= DE
] m=

[

Figure 1. Using Data Theater to create an explorable that rolls two dice, calculates the average of the two rolls, and displays the history of all averages.
(A) Instructors implement the core logic using Python code. (B) Instructors visualize the code through a declarative JSON spec that maps Python values
to visual glyphs. (C) The visualization live-updates as either the Python or JSON change. (D) Explorables authored in Data Theater contain a single
interactive element: a slider that steps forward and backward through execution steps and causes the visualization to animate as Python values change.

THE DATA THEATER SYSTEM

Informed by these design goals, we are developing a sys-
tem called Data Theater to enable instructors to prototype
explorables using Python and JSON.

Figure 1 shows an overview of Data Theater: (A) To begin
creating an explorable, an instructor inputs a short Python
program that contains the core logic of the explorable. For
example, a programming instructor might input a program that
implements insertion sort, while a statistics instructor might
input a program that simulates coin flips. Because instructors
usually already have these short demo programs written for
their courses, Data Theater does not require them to change
their Python code to add visualization elements. (B) Instead,
an instructor specifies the visualization using a declarative
JSON spec that maps Python values within the input program
to visual attributes like position and size. (C) Data Theater
combines the Python code and JSON spec to render a visu-
alization based on the program’s data. (D) To interact with
the explorable, use a slider to step forwards and backwards
through the program’s execution, akin to single-stepping in a
debugger; as the data of the program changes between steps,
the visualization is automatically animated and updated live
to match the data (Design Goal D2).

To show the explorable authoring experience, we describe
how a hypothetical instructor named Ani creates a simple
explorable that teaches statistics by simulating dice rolls.

Step 1: Inputting Python Code

Ani opens the Data Theater web app and copy-pastes her
Python code into the left editor pane (Figure 1a). For a pre-
vious offering of her introductory statistics course, she has
already written Python code to simulate dice rolls to show
the central limit theorem. This code rolls a simulated dice

100 times, stores each roll’s result (a random integer from 1
to 6) in a rolls variable, and appends the running average
roll result to an avgs list. Without Data Theater, she would
normally have printed out the results to a terminal (which is
neither visual nor interactive) or needed to write extra code
using a graphing library to plot the distribution of roll results.

Using Data Theater, she simply copies that code into the left
editor pane and specifies the visualization separately in the
next step. That way, her Python code concisely demonstrates
the core logic and is not obfuscated by excess boilerplate to
set up interactive visualizations (Design Goal D1).

Step 2: Mapping Python values to visual attributes

Ani writes a JSON spec in the middle pane (Figure 1b) to tell
Data Theater how to turn her Python code from Step 1 into a
visualization. Data Theater provides a declarative JSON-based
grammar modeled after Vega-Lite’s grammar of interactive
graphics [9]. Every spec is composed of one or more glyphs
which represent visual objects. Similar to Vega-Lite, Data
Theater’s grammar supports glyphs for rectangles, ellipses,
lines, and text; it also has a collection glyph for grouping.

The diagram below shows a simple demo where Ani cre-
ates a dicel visualization element as a rectangle glyph
("type":"rect"). She sets the width and height to 50 to
make it a square. The grammar allows Ani to map the val-
ues of Python variables to visual attributes like x-coordinate,
y-coordinate, width, height, and color. In the spec below she
adds "x": '"roll * 100", which maps the x-coordinate of
the glyph to the value of the Python roll variable multipled
by 100. She also sets the text label of the glyph with "text":
"roll", which sets the label to the roll value:

{ 3 % 100 = 300
"dicel": {

“type": "rect",

s o1l k100" roll = 2
"width": 50, 200
"height": 50,

"text": "roll"

} roll =5

Data Theater parses the spec and renders its result to the
output pane, in this case a single rectangle. The visualization
always stays in sync with the value of rol1l as the Python code
executes. In the above diagram, when roll is 3, the dice’s x-
coordinate is 300 (3*100) and its label is ‘3’. As the program
executes and more random rolls are performed, the rectangle
changes positions and labels based on its value (see Step 4).

Note that in this example, "x": "roll * 100" constructs
a linear scale. Besides manually creating scales with Python
expressions, Data Theater supports all scales provided by the
D3 library [3]. For example, Ani can use a color scale from D3
to set the rectangle’s color based on Python numerical values.

Step 3: Mapping Python collections to visual attributes
Aside from mapping scalar values (e.g., numbers) to visual
attributes, Ani can also write JSON to map an entire collection
(e.g., a Python list or NumPy array) to visual attributes. The
diagram below shows how she can specify how to visualize
the entire avgs list. She creates a ‘collection’ type, maps it
to a ‘rect’ glyph, and specifies the x and y coordinates again
using Python expressions inside the JSON spec:

2%100 = 200 1450 = 50

"dice": {

"type": "collection", 550

NI e

300

"x'": "avgs[i] *x 100",

myts ik 5@

"width": 50,

"height": 50,

"text": "avgs[i]"

}
}

For a collection glyph, the special ‘i’ index variable iterates
over all elements in order. The output pane above shows
what is rendered if avgs = [2, 5.5, 3]. Three rectangles
are rendered on-screen, one for each element of avgs. The
x-coordinate of each is 100 pixels times the element’s value
(avgs[1]*100), the y-coordinate is 50 times the index (1*50),

and each has a text label with its value ("text":"avgs[i]").

Step 4: Interacting with the prototype explorable

So far we have shown how Ani can map Python code into
visual attributes with her JSON spec. This is reminiscent of
creating a static data visualization. However, a defining trait
of explorable explanations is the ability for users to interact
with the explorable. Where does this interactivity come from?

Creators of popular explorables [7] implement such interactiv-
ity by hand-coding JavaScript event handlers for direct manip-
ulation interactions such as mouseovers, mouse clicks, or drag
and drop, and by creating UI widgets such as sliders that are
tied to other on-screen elements. However, we found in our
formative interviews that instructors did not want to face the
steep learning curve of hand-coding such general-purpose in-
teractivity. Thus, we opted to implement a more limited form
of interactivity in Data Theater, which matches how instruc-
tors often conceptualize animated explanations as step-by-step
guided walkthroughs of algorithms (Design Goal D3).

Data Theater provides interactivity via an execution step slider
below the code editor (Figure 1d). When the user inputs code,
it is executed and all of its run-time values at each step are
recorded in a Python Tutor trace [5]. The slider allows the user
to scrub back and forth through all execution steps. As the user
scrubs the slider, the output pane shows the visualization with
glyph elements corresponding to the values of program data
at that step. For instance, as Ani’s example program executes,
the avgs list gets more and more items appended to it, so the
output pane renders all of those items as they enter the list.

To demonstrate the slider at work, consider the small program
below that defines two variables ‘p’ and ‘n’:

step| p n
p=20

for n in [2, 6, 10]: ! 0
p=p+n 2 0 2
3 2 2
4 2 6

Step: 5

. 5 8 6
6 8 10
7 |18 10

As the user scrubs the slider, ‘p” and ‘n’ take on the respective
values at each execution step as shown in the table on the right.
By mapping ‘p’ and ‘n’ to glyphs using JSON like we will do
next, the user can visualize them in arbitrary ways.

Finally, to enable explorables to animate smoothly, whenever
an updated Python value causes a visual attribute of a glyph to
change, Data Theater will automatically animate the transition.
The spec below defines a circle glyph (an ‘ellipse’ with 10-
pixel radius) and maps its x and y coordinates to the values of
the Python ‘p’ variable defined in the code above:

step| p mm

{
"ball": {
"type": "ellipse",

e vp % 19", 3 ?
nyM Upkn % 10", .
\
"rx": 10, ‘\‘
"ry": 10, 5 8 \
¥ </ v
7 |18 p=180)

As the user scrubs the slider to step through execution, ‘p’
takes on values such as 2, 8, and 18. As this happens, the circle
in the output pane smoothly animates to move in between
the respective x and y coordinates corresponding to the ‘x’
and ‘y’ values as indicated by the JSON spec. This allows
an instructor to, say, create a physics simulation explorable
showing a bouncing ball affected by different gravity settings.
(Without smooth animation, it would simply look like the ball
disappears and reappears elsewhere, which is jarring.)

From animated visualizations to explorable explanations

In this section we have shown how Data Theater enables in-
structors like Ani to take Python code, augment it with a JSON
spec, and use an execution slider to animate their data-driven
visualizations. However, note that an animated visualization
is only one part of an explorable explanation; the other key
component is the explanatory prose itself that surrounds the
visualization. Since Data Theater visualizations are imple-
mented as HTML/CSS/JavaScript web technologies, they can
be embedded within web-based presentation slides or articles
where authors can write the surrounding explanations. In our
example, Ani would likely string together a few Data Theater
visualizations of dice rolls to progressively build up more com-
plex ones to show statistics concepts such as the central limit
theorem. Since Data Theater is a live programming system,
she can build up those examples live in class, step through
them, and tweak the code as she makes verbal explanations.

PRELIMINARY CASE STUDY: RE-CREATING BRET

VICTOR’S SKATEBOARD EXPLORABLES

As a preliminary case study to demonstrate Data Theater’s
capabilities, we recreated the interactive visualizations that
power two explorables from Bret Victor’s widely-read Simu-
lation as a Practical Tool web article [11]. Each took fewer
than 20 lines of Python to replicate. These explorables explain
a physics simulation where a skateboarder launches from a
rotating disk towards a wall. The first explorable in the article
simulates the skateboarder traveling towards the wall, and the
second one calculates the time it takes the skateboarder to hit
the wall based on different initial launch angles.

Explorable 1: skateboard path simulation

To recreate the first explorable, we begin by defining Python
variables that record the disk position, disk rotation, initial
skateboarder position, and initial skateboard velocity. Then
we write a loop to simulate the skateboard moving forward as
time elapses. In total, the Python script is 18 lines of code (11
lines to initialize variables and 7 lines for the simulation). Data
Theater allows us to focus our Python code on the essence of
the simulation instead of tangling it with visualization code.

We then specify the JSON visualization spec, which contains
three glyphs: an ellipse for the disk, a rectangle for the skate-
boarder, and a line showing the skateboarder’s path over time.
To create the ellipse glyph, we map Python values of the disk
object to x-position, y-position, radius, and rotation. To create
the rectangle, we map Python values of the skateboard object
to x- and y-positions. To create the line glyph, we map Python
values of the history of skateboard positions to the x and y-
values for the line. In this example, all values are mapped

directly without scaling; the final visualization spec is under
25 lines long. The diagram below shows a summary of the
JSON spec and example output at one execution step:

_ouou

variable description

disk position of disk
r radius of disk
rotation rotation of disk
X x-pos of skateboard
y y-pos of skateboard
XS all previous x-pos

ys all previous x-pos

Since the Python simulation code updates the skateboarder’s
position as execution progresses, we animate this explorable
by using the slider to step forward. As we step through execu-
tion, the skateboarder (orange rectangle) launches off the disk,
heads straight to the wall, and bounces off at the same angle:

Output

By tweaking Python variables, we can alter the physics of the
simulation. This interactive visualization now matches the
behavior of Victor’s original explorable, except the graphics
are not as polished since they are simple shapes; allowing the
user to import sprite graphics could make this higher-fidelity.

Explorable 2: initial disk angle simulation

The second explorable in Simulation as a Practical Tool [11]
builds on the first one by allowing the user to change the
initial rotation of the disk and observe how the trajectory of
the skateboarder changes. It also uses a line graph to plot the
time taken to reach the wall for different starting rotations.

To recreate this explorable, we modify our Python script to
iterate over disk rotations rather than over time. For each
starting rotation, we record the final x- and y-positions of the
skateboarder and the amount of time it takes to reach the wall.
The final Python script is 17 lines long, with many lines copied
verbatim from the original script.

The visualization for this explorable contains the same glyphs
as the previous one and with an additional line glyph to plot
the time taken to reach the wall. To visualize the disk, skate-
boarder, and trajectory, we copy the glyphs from the previous
explorable. We use them nearly verbatim with minor modi-
fications to account for changed Python variable names. To
visualize the time taken to reach the wall across rotations, we
create a line glyph and map the rotations to x-values and times
to y-values. This JSON visualization spec is 38 lines long.

The diagram below shows three example steps through the
simulation as the user scrubs the slider. Note that the line plot
at the bottom gradually builds up as the user steps through
different rotation angles, which matches Victor’s original:

Output

Plot of time vs rotation angle

Output

Plot of time vs rotation angle Plot of time vs rotation angle

Comparing Data Theater to original explorables
Reflecting on our case study experiences, we found it intuitive
to recreate simple physics simulations such as these as long
as we adopted the mindset that Data Theater uses execution
steps as a ‘one-dimensional slider.” In the first explorable, we
used the slider to scrub through time steps, and in the second
one, we used it scrub through initial disk rotation angles.

One limitation to Data Theater’s ‘one-dimensional slider’ in-
teraction model is that it does not have the capability to exactly
replicate the richer interactions in the original explorables. For
example, the first explorable plays a sequence of steps as a
movie and the second rotates the disk based on the user’s
mouse position. Data Theater’s only interactive UI element is
the execution slider to step through Python code. That said, an
instructor can use the slider to approximate these interactions.
For the first explorable, moving the slider forward at a steady
rate animates the visualization like a movie. For the second,
moving the slider back and forth creates a similar animation
as moving the mouse left and right in the original explorable.

Directly comparing the amount of code we wrote to Victor’s
original code is hard since his explorables are implemented
in Adobe Flash (which is now unsupported in modern web
browsers) without available source code. Based on our prior
experiences, we estimate that fully recreating these two ex-
plorables using JavaScript libraries would take at least a few
hundred lines of code. In contrast, our implementation of these
two explorables in Data Theater is less than a hundred lines of
code combined.

CONCLUSION

We have presented Data Theater, a live programming system
that combines step-by-step Python execution with a JSON
visual grammar to let instructors quickly prototype explorable
explanations in the browser. The key simplifying insight that
enables our approach is to eliminate extra degrees of interface
design freedom by using the execution slider as a unified
way to interact with the explorable. In closing, although our
approach can greatly reduce boilerplate code, it still cannot
eliminate the intrinsic complexities of writing code to express
core simulation logic and writing suitable prose to encapsulate
it in a high-quality explanation. We are currently investigating
ways to provide better support for these ongoing challenges.

Acknowledgments: This material is based upon work supported by the Na-
tional Science Foundation under Grant No. NSF IIS-1845900.

REFERENCES

[1] 2014. Explorable Explanations, a hub for learning
through play! https://explorabl.es/. (2014). Accessed:
2020-09-17.

2018. Publishing in the Distill Research Journal.
https://distill.pub/journal/. (2018). Accessed:
2020-09-17.

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.
2011. D3: Data-Driven Documents. IEEE Transactions
on Visualization and Computer Graphics 17, 12 (Dec.
2011), 2301-2309.

Matthew Conlen and Jeffrey Heer. 2018. Idyll: A
Markup Language for Authoring and Publishing
Interactive Articles on the Web. In Proceedings of the
31st Annual ACM Symposium on User Interface
Software and Technology (UIST ’18). Association for
Computing Machinery, New York, NY, USA, 977-989.

Philip J. Guo. 2013. Online Python Tutor: Embeddable
Web-based Program Visualization for CS Education. In
Proceedings of the 44th ACM Technical Symposium on

Computer Science Education (SIGCSE ’13). ACM, New
York, NY, USA, 579-584.

Vi Hart and Nicky Case. 2014. Parable of the Polygons:
A playable post on the shape of society.
https://ncase.me/polygons/. (2014). Accessed:
2020-09-17.

Fred Hohman, Matthew Conlen, Jeffrey Heer, and Duen
Horng (Polo) Chau. 2020. Communicating with
Interactive Articles. https://distill.pub/2020/
communicating-with-interactive-articles/. (2020).

2

[}

3

[}

[4

—

[5

—_—

[6

—_

[7

—

[8

—

Daniel Kunin. 2020. Seeing Theory: a visual
introduction to probability and statistics.
https://seeing-theory.brown.edu/. (2020). Accessed:
2020-09-17.

Arvind Satyanarayan, Dominik Moritz, Kanit
Wongsuphasawat, and Jeffrey Heer. 2017. Vega-Lite: A
Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (Jan. 2017),
341-350.

Steven L. Tanimoto. 2013. A Perspective on the
Evolution of Live Programming. In Proceedings of the
1st International Workshop on Live Programming (LIVE
’13). IEEE Press, 31-34.

Bret Victor. 2009. Simulation as a Practical Tool.

http://worrydream.com/SimulationAsAPracticalTool/.
(2009). Accessed: 2020-09-17.

[12] Bret Victor. 2011. Explorable Explanations.
http://worrydream.com/ExplorableExplanations/. (2011).
Accessed: 2020-09-17.

[13] Bret Victor. 2013. Tangle: explorable explanations made
easy. http://worrydream.com/Tangle/. (2013). Accessed:
2020-09-17.

[9

—

[10

—_

[11

—

https://explorabl.es/
https://distill.pub/journal/
https://ncase.me/polygons/
https://distill.pub/2020/communicating-with-interactive-articles/
https://distill.pub/2020/communicating-with-interactive-articles/
https://seeing-theory.brown.edu/
http://worrydream.com/SimulationAsAPracticalTool/
http://worrydream.com/ExplorableExplanations/
http://worrydream.com/Tangle/

	Introduction
	Related Work
	Formative Interviews and Design Goals
	Explorables as worked examples
	Barriers to creating explorables
	Guided walkthroughs, not freeform playgrounds
	Design goals

	The Data Theater System
	Step 1: Inputting Python Code
	Step 2: Mapping Python values to visual attributes
	Step 3: Mapping Python collections to visual attributes
	Step 4: Interacting with the prototype explorable
	From animated visualizations to explorable explanations

	Preliminary Case Study: Re-creating Bret Victor's Skateboard Explorables
	Explorable 1: skateboard path simulation
	Explorable 2: initial disk angle simulation
	Comparing Data Theater to original explorables

	Conclusion
	References

